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We introduce a one-dimensional model involving the nucleation and the drift of 
many particles. The model originates from interacting kink systems and 
simulates time evolution in modulated systems. In this model the nucleation rate 
of a particle depends nonlocally on the density of preexisting particles and the 
drift of particles is due to a weak and repulsive interaction among them. We first 
study the statistics of this model in the case that the drift of particles is 
negligible, and then consider the effects of the drift of particles. 

KEY W O R D S :  Statistical dynamics; transient process; nucleation; drift; one 
dimension. 

1. I N T R O D U C T I O N  

We often observe nucleation and/or drift of some topological defects in a 
system during transition from one stationary or equilibrium state to 
another. For  example, the commensurate to incommensurate (C-IC) phase 
transition (1~ requires the nucleation and growth of so-called stripples, i.e., 
particular clusters of discommensurations. Also, the smectic C to smectic 
C* (SmC-SmC*) transition in a thin liquid crystal layer, (2) which is 
induced by removing an external electric field, involves the appearance of 
straight, twisted disclinations and their motion. Other examples occur in 
the convection of fluids and in the plastic deformation of solids, and so on. 

In this paper we study a simplified one-dimensional model involving 
nucleation and/or drift processes of particles (by which we mean 
topological defects) in one dimension. In our model we take into account 
the following two properties, which are often shared by real systems: (1) 
The rate (nucleation rate) at which a new particle appears per unit time 
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and per unit length of the system depends on the local density of already 
existing par.ticles. (2) (2) The interaction between the particles is repulsive 
and of very short range compared with the distance between particles, and 
the motion of a particle due to the interaction is overdamped by friction 
with the background. In Section 2 we define the model, which involves 
both the nucleation and the drift of particles. (3/This model is a microscopic 
model in which each particle preserves its identity. 

In order to derive the hydrodynamic theory for the density fluctuation 
of particles from this model one has to assume that the particle distribution 
is locally stationary in a short time interval. The validity of this 
assumption, however, is severely restricted in our model when the drift of 
particles is taken into account. Hence we first study in Section 3 the hydro- 
dynamic theory of the model without the interaction between particles. 
Detailed calculation is done for a concrete example (Appendix D). The 
correlation hole is found in the (macroscopic) density correlation function, 
which reflects the saturation effect of the nucleation rate, and the size of the 
correlation hole is shown to be time-dependent. 

Then in Section 4 we study drift of the particles with no nucleation but 
from two initial configurations that typify the transient distributions of the 
particles in the nucleation-plus-drift system. When the interaction between 
particles is strongly nonlinear, we find (1) that a cluster of particles diffuses 
by two modes, first by smearing out of the boundaries of the cluster and 
then by spreading out of the cluster itself with much a slower time depen- 
dence than the former, and (2) that a transient shock front is formed when 
a particle is added to the almost periodic array of the particles. We also 
argue that a hydrodynamic theory for the nucleation-plus-drift process is 
unlikely to be established. 

Section 5 is devoted to a summery. 

2. M I C R O S C O P I C  M O D E L  

We denote the position of the nth particle on the x axis by x,,(t) such 
that 

�9 . .  < x , , ( t ) < x , , + ~ ( t ) <  . . -  (2.1) 

where t is the time. The interaction energy between the two particles at a 
distant A is denoted by V(A/~), where ~ is the range of the interaction and 
V(z) is a decreasing function of z since we assume that the interaction is 
repulsive. In real systems the range of interaction ~ is of the order of the 
particle size, i.e., the typical width of a topological defect such as a discom- 
mensuration or a twisted disclination. In the following we study only the 
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case where the interparticle distances are always much larger than 
(otherwise the particles lose their identity), and the interaction V(A/~) 
is strongly nonlinear for A/~> 1. Neglecting the thermal fluctuation 
force other than that is responsible for the nucleation, we describe the 
overdamped drift motion of particles as follows: 

d-; X,, 

where F is inverse of the friction constant for the particle motion and 
V'(z) = dV(z)/dz. The form of (2.2) or (2,3) is unsuitable for describing the 
nucleation, since upon nucleation the number of variables changes and a 
renumbering of their indices is required. By introducing the field variable 
we can avoid such trouble. Defining the microscopic density of particles by 

~(x, t)= ~, 6(x -x~(t))  (2.4) 
n 

we can rewrite (2.2) in the following form (this model was introduced in 
further detail in Ref. 3): 

The nucleation of particles is incorporated by adding to the rhs of 
(2.6) terms of the form 

g(x, t) = ~ 6(x - x~) 6(t - t~) (2.6) 

where t~ and x~ are, respectively, the time and the position at which the ath 
nucleation occurs. We assume that the nucleation is a point random (or 
Poisson random) process and that it is locally specified thoroughly by the 
nucleation rate f(x, t) such that (4) 

(~(xl, tl)),1 = / ( x , ,  ti) (2.7) 

(i(x, ,  t,)S(x2, t2l...~(x,~, t,,,)),,~.=/(x,, t,) ~I ~ ( x j - x i )~ ( t j - t l )  (2.8) 
j = 2  

for m ~> 2. Here (-)t~ and (-),1c represent, respectively, the average and 
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the corresponding cumulants over random nucleation events just after tl. 
In the next section we will use the following identity for m >~ 2: 

(Six,, tl).--~(xm, tm)>,,, = ( r  t~).. "/iX~ t,,)>,l~ i2.9) 

f(X, t)=--~(X, t)-- (~(X, t ) ) ,  (2.10) 

This holds irrespective of the particular probability distribution (see 
Appendix A). 

Next we give the form of the nucleation rate [(x, t) such that it 
depends on the local density of already existing particles. We assume [(x, t) 
as follows: 

iix, t) = ~ ( M  �9 #(x, t)) (2.11) 

where M �9 tS(x, t) is the convolution 

M * tS(x, t)= dy M ( x -  y) ~(y, t) (2.12) 
o o  

and J ( z )  is a nonnegative function of z. We assume that M ( x ) =  
M ( - x )  >~0 and that M(x) is characterized by a length lM which is much 
larger than ~ such that only for Ix] < lM is the value of M(x) appreciable. 
For convenience we assume that M(x) is normalized, 

fo~ M(x)= (2.13) dx 1 
- -  o o  

The M */5(x, t) has the meaning of the particle density at time t averaged 
over the region of width ~IM around x, and J ( z )  represents the effect of 
the preexisting particles at t on the rate of the nearby nucleation event just 
after t. I2~ [This means that i(x, t) and g(x, t) are statistically independent.] 
We do not specify the functional form of ,~(z) as well as M(x), but only 
assume the following properties of J (z) :  (1) ~(z)  is a monotonically 
decreasing function of z, and (2) it vanishes strictly for z larger than some 
constant Peq" This means that as the local density of particles approaches 
its equilibrium value p~q, the nucleation of a new particle becomes 
increasingly unlikely. From the definition of lM it is natural to assume that 
Peq ~ IM 1' When the nucleation is of the activation type with the activation 
energy E, that is, J ( M ,  ~ ) ~ e  E/r, the above assumption implies that E 
diverges as M ,  t5 approaches Peq from below. If the divergence of E as 
function of M ,  ~ is stronger than logarithmic, as is usual for the first-order 
phase transition, one can see that the curvature d2J(z)/dz 2 eventually 
becomes positive as z approaches Peq from below. 
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Including the nucleation term g(x, t) thus defined, the following 
equation formally describes the microscopic process of nucleation and drift 
of particles: 

c~ 3 A x ,  t )  drift a---7 ~(x, t ) = ~ p (  " +d(x, t) (2.14) 

where the first term on the rhs is defined in (2.5). We can construct the 
master equation equivalent to (2.14). This is shown in Apendix B. 

3. MACROSCOPIC  BEHAVIOR OF THE DENSITY 
FLUCTUATION IN A SYSTEM WITHOUT DRIFT 

In this section we study the model 

0 
~ tS(x, t )=  ~(x, t) (3.1) 
Ot 

where the stochastic properties of s t) are fully described in the last 
section. For simplicity we specify the initial condition of the particle density 
to be 

~(x, 0) : 0 (3.2) 

Below we study the macroscopic, or hydrodynamic, behavior of the density 
fluctuation; the results are summarized in Fig. 1. We introduce the average 
density of particles p*(t), which is the average of/~(x, t) over all possible 
random processes: 

p*(t) = @(x,  t ) )  (3.3) 

Here ( - )  denotes the average over all possible random processes and 
should not be confused with ( . ) , .  Because of the uniform initial condition 
(3.2), it does not depend on x. As usual ,  (6'7) we decompose ,5(x, t) as 

~(x, t) - p*(t) + ~6(x, t) (3.4) 

Accordingly, (3.1) can be formally decomposed as follows: 

d 
d-t p*(t) = ( J ( p * ( t )  + M �9 ,~6(x, t)) ) (3.5) 

0 
~ ~6(x, t)= { J ( p * ( t )  + M , ,5~(x, t) ) -  <~r + M , ~j(x,  t))>} 

+ f (x ,  t) (3.6) 
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with 

f~(x, t) =_ g(x, t) - J (p*( t )  + M �9 6~(x, t)) (3.7) 

where we have used (2.7), (2.11), and (2.13). Here f ( x ,  t) is the fluctuation 
part of the nucleation and obeys, from (2.8) and (2.9), 

( f (x ,  t)>,=o (3.8) 

(f(xl, tl)'"f(Xm, tm)),l,, 

= J ( p * ( t l ) + M *  6fi(xl, tl)) f i  6(X~--Xl)6( tk-- t l )  (3.9) 
k=2 

for m>~2. In the last equation the cumulant ( - ) , , ,  is taken over the 
nucleation events just after tl. 

Our aim is to know from (3.5)-(3.9) the behavior of the macroscopic 
density fluctuation 6p(x, t), which is defined by 

m ~ _ ~  t + r  t 1 F - v + l / 2  

ap(x, t) 1 J, at 7 J dx' a~(x', c) (3.10) 
"C x - -  l / 2  

and depends on 1 and r, the coarse-graining scales in space and time, 
respectively, our strategy is (1) to assume 

IJ(p*(t)  + M �9 6tS(x, t)) - J ( p * ( t ) )  - f ( p * ( t ) )  M �9 6~(x, t)l 

IJ ' (p*(t))  M ,  6~(x, t)l (3.11) 

where f ( z )  = dJ(z)/dz, and then (2) to seek for the condition on l or ~ for 
the consistency of such an assumption. We note here that for any transient 
process the coarse-graining time scale r should not be larger than the 
characteristic time scale of the process itself, since otherwise we could not 
observe the transient process. Therefore in our case we assume that 

1 d , 1 
p , ( t ) ~  p (t)<~ 7 (3.12) 

1 1 
J(p*(t) )  J(p*( t ) )  <-~ (3.13) 

Because we have from (3.5) and (3.11) 

d 
dt p*(t) ~- J(p*( t ) )  (3.14) 
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we can reexpress (3.12) and (3.13) as 

1 1 
< (3.12') 

p*(t)~~(p*(t))r 

[J '(p*(t))l < 1 (3.13') 
~r ~ J (p*( t ) ) z  

Now we expand J(p*( t )  + M * 6fi(x, t)) in (3.6) in powers of M * 6~(x, t) 
and average both sides of (3.6) over the coarse-graining scale l and z as in 
(3.10). Thus, we have 

0 
~t 6p(x, t) ~- {J ' (p*(t))  M * 6p(x, t) + ...} + f ( x ,  t) (3.15) 

with 
t+z 1 fx  +//2 

where we have used (3.13), and the ellipsis denotes the contribution from 
the higher order terms in the expansion of J(p*( t )  + M *  6fi(x, t)). Since 
we have assumed in Section 2 that f ( z ) <  0 for 0 ~< z < Peq, the terms in 
the curly bracket on the rhs of (3.6), and therefore those in (3.15), serve as 
the negative feedback for the density fluctuation. On the other hand, the 
assumption (3.13') means that the characteristic decay time of the 
fluctuation %(p*(t)), which is defined from (3.15) by 

1 
- - - [ J ' ( p * ( t ) ) l  (3.17) 
~c(p*(t)) 

is longer than the coarse-graining time r. Therefore only f ( x ,  t) is the 
source of the density fluctuation and it should be balanced with the lhs of 
(3.15). (In Appendix C we show explicitly such a balance of terms in a 
simple zero-dimensional model.) In estimating the magnitude of f ( x ,  t), we 
adopt the discretized representation of space and time with their mesh sizes 
l and r, respectively, in order to clarify the dependence on these scales. We 
denote 

x = Xl Xan  integer (3.18) 

t = Tr Tan  integer (3.19) 

Then the cumulants o f f ( x ,  t) can be evaluated from (3.9), (3.11), (3.13), 
and (3.16) as follows: 

( f (X~I ,  T,r ) . . . f (X,~ l ,  Tmz) ) r , ,=  ( l~)-"+tJ(p*(T~r))  f i  6x;x, grjr~ 
j - -2  

(3.20) 
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where m >~ 2, and 3 o is the Kronecker delta function. The cumulant ( . ) r ,  
is taken over the nucleation events between T~T and (T~+l )z .  It is 
~(p*(t))  that should be compared with f ( x ,  t), since these lead, respec- 
tively, to the random and the systematic variations of the macroscopic 
density. From (3.20) we obtain 

{f( X~I ,T~)  f(Xml,  T ~ z ) \  
~ ( p * ( r l ~ ) )  " ~ (O* (L .~ ) ) /T1 ,  = { J ( p * ( r , ~ ) ) l ~ }  -~+1 [ ]  ~x,x,~T,~l 

/ =  2 

(3.21) 
Therefore, if 

J(p*(t))  lr >> 1 (3.22) 

the cumulants with m/> 3 are negligible and 

f (x,  r) {~(p*(t))  l~} -,/2 < 1 (3.23) 
~ ( o * ( 0 )  

can be regarded as the Oaussian noise, which is uncorrelated or white on 
scales larger than l and z. From (3.22), (3.12'), and (3.13') we obtain the 
conditions 

1 
- -  ~ l (3,24) 
p*(t) 

IJ ' (p*( t ) ) l  < l (3.25) 
a~(p*(t)) 

If these are satisfied, then we can make f ( x ,  t) an uncorrelated Oaussian 
noise by properly choosing ~ within the bounds given by (3.12') and 
(3.13'). In Figs. la and lb we show schematically (3.24) and (3.25) in the 
(p*, l) plane. In order to see the behavior of 6p(x, t) from (3.15), we 
classify the process into several stages and study each of them separately. 

I. p*(t) < l f f  (the early stage): In this stage it is quite unlikely that 
the nucleation occurs at a distance less than ~21M from any one of the 
preexisting particles. Therefore, the nucleation rate J(p*( t )  + M �9 6p(x, t)) 
should be practically equal to J(0) .  In this sense (3.11) is valid and we 
have from (3.14) and (3.15) 

d 
p*(t) " J (0 )  (3.26) 

0 
8t 6p(x, t) ~- f ( x ,  t) (3.27) 
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Fig. 1. Schematic diagrams indicating the regimes in which a hydrodynamic description may 
be valid. The thick line in each figure represents the larger of the lhs of (3.24) and the lhs of 
(3.25). Therefore if l is well above this line, both (3.24) and (3.25) are satisfied. (a, b) Possible 
cases according to whether there does (does not) exist a time domain with l f f  < p*(t)< PM in 
which the thick line is well below the horizontal line l = lM. 

If we choose the coarse-graining scale l so that it satisfies (3.24) and (3.25), 
the random source f ( x ,  t), which can be regarded as the Gaussian noise 
[cf. (3.21)], is characterized by the following variance: 

( f (X l ,  T z) f (X ' l ,  T'r) T = ~ / ~  3xx' 6 rr' (3.28) 

in the discretized representation. 
For p*(t)>~ lM 1 w e  have to distinguish the following two cases: 

Case a. lM>> [J'(l~/)[/J(lM 1) (see Fig. la) 

Case b. lM < ]J'(IM1)I/J(IM 1) (see Fig. lb)  

In case a there is the following stage. 

II. 12f < p * ( t ) < PM with [ f (PM )[/J (PM ) =- I M (the intermediate stage 
for case a only): In this stage we may choose l (as in fact we do) such that 

Max ( p ~ t ) '  If(P*(t))l~t<lMj(p*(t)) ] (3.29) 
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With this choice we can replace M . a ~ ( x , t )  in (3.5)-(3.11) by 
M *  6p(x, t), since M .  6~(x, t) is essentially the macroscopic density 
averaged over ~lM (>l). Therefore, from (3.5), (3.6), (3.10), and (3.16) we 
have for l< l M 

d 
dt p*(t) = ( Y(p*(t)  + M �9 6p(x, t)) ) (3.30) 

D ~ p ( x , t ) = J ( p * ( t ) + M , 6 p ( x , t ) )  (~r  c~p(x , t ) ) )+ f ( x , t )  
#t 

(3.31) 

Because of the left inequality of (3.29), the random source f (x ,  t) can be 
approximated by the Gaussian noise with 

Y(p*(T~) + M ,  ~p(:fl, ~r)) 
( f (X l ,  r r ) f ( X ' l ,  T'z))r, .= lz fixx, 6TT'  (3.32) 

This is small compared with J(p*( t )  + M * ap(x, t)) by the order of 

[.J(p*(t) + m �9 6p(x, t)) l~] ~,2 

The assumption (3.11 ) is now written as follows: 

],,r + m �9 6p(x, t)) - J ( p * ( t ) )  - J ' ( p * ( t ) )  M �9 6p(x, t)[ 

�9 ~ IJ '(p*(t))  M .  6p(x, t)J (3.11') 

By solving (3.30) (3.32) under this assumption, we obtain, neglecting the 
initial transient terms, 

6p(x, t) = f dx e ikx afik(t) (3.33) 

~ k ( t ) =  dsexp 

where Mk and fk are the spatial Fourier components of M(x) and f ( x ,  s), 
respectively, which are defined in the same manner as cS~k(t ) in (3.33). Note 
that these Fourier components are cut off for Ikl > l -~ ( > l ~ ) .  The struc- 
ture function Sk(t), which is defined by 

(fitSk(t) 6fik,(t) ) = 2nfi(k + k') Sk(t) (3.35) 

is given from (3.32) and (3.34) as 
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or, by using (3.14), 

S~(t) = fp*(t) dp[  ~ ( -~  j~J(P*(t))'~ M~+~-k (3.37) 

Sk(t) is also cut off for Ikl >1-1. The magnitude of 6p(x, t) can be 
evaluated by the following formula: 

dk 
(@(x, t) 2) = f ~ Sk(t) (3.38) 

If IQ~. + 37/_ k is positive, as we assume [see Appendix D, where Sk(t) is 
evaluated for a concrete model of J ( z )  and M(x)],  we find 

Sk(t) < p*(t) 0(l ~ - Ikr) (3.39) 

because J(p*(t))/J(p)<~ 1 if p<~p*(t) and there is an upper cutoff at 
Pkl ~ 1-1, where O(z) is the usual unit step function. Therefore we have 

(6p(x, t) 2) 1 
< - -  ,~ 1 (3.40) p*(t) 2 ~p*(t) l  

This estimation is very natural, since for completely random nucleation the 
left inequality in (3.40) should become the equality, and in our model the 
density fluctuation is suppressed for lkl <l~41 in comparison to the com- 
pletely random case. If we substitute (3,37) and (3.38) into (3.1l'), we 
obtain another constraint on/ ,  which is not shown in Figs. la and lb. We 
expect from (3.40) that this constraint also gives the lower bound of/ .  It is 
clear that the results (3.11')-(3.40) hold also for l>lM, since once the 
linearization approximation for (3.31) is guaranteed for l<lM the further 
coarse-graining over l > lM merely leads to the red shift of the wavenumber 
upper cutoff. 

We note that the expressions (3.34)-(3.37) are also valid for 
l>> p*(t) -1 in the initial stage I [see (3.26) and (3.27)] if the intermediate 
stage exists. This is because in this case lM >> JJ ' ( l~  ~)l/Jc(l~ ~) holds, which 
in turn means that 

d(p*(t))  -~ ~r for O<~p*(t)<~l~4' (3.41) 

In Appendix E we develop the path integral formalism for the 
evolution of 6p(x, t), which is valid in the intermediate (and initial) stages. 

III. p*(t)>pM for case a and p*(t)>lM I for case b (the final stage): 
In this stage the conditions (3.24) and (3.25) imply l>> l M. Therefore, if we 
choose l ~  lM, Eqs. (3.30) and (3.31) are valid, but the noise f (x ,  t) can no 
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longer be regarded as a white Gaussian noise. In order to obtain p*(t)  or 
(6p(x, t) 6p(x~, t)), etc., in such choice of l, we must  go back to (3.5)-(3.9) 
and study them kinematically. The result should reflect the nonlinearity of 
J ( z )  as well as the detailed form of M(x) [in fact, the condit ion (3.25) 
might be altered due to such nonlineari ty] .  On  the other hand, if we 
choose l such that (3.24) and (3.25) (or its improved form) are satisfied, 
f ( x , t )  and 6p(x, t) become the Gaussian random variables whose 
variances are obtained only from the kinetic theory ment ioned above. The 
reasons are as follows: (1) There is no correlation between the nucleation 
events occurring at a distance greater than lM, which is the definition of lM 
(see also Appendix D), and (2) f ( x ,  t) and 6p(x, t) are the averages over 

l/lM( ~> 1 ) of independent  variables representing each correlalt ion region 
of the size ~ l~. Then, from the central limit theorem, f ( x ,  t) and 6p(x, t) 
become the Gaussian r andom variables whose variances are both  ~lM/l  
( 4  1 ) times those to each correlation region. 

In Fig. 2 we show Sk(t) obtained by the computer  simulation in which 
J ( z )  and M(x) are defined by (D. I )  and (D.2). The simulation method is 

S~(t) 

�9  

(b) 

' ( a )  

, , ~ka 

~Ma 4 8 24 16 12 

Fig. 2. The structure function Sk(t) obtained from the computer simulation (see the text) as 
a function of ka at various values of time, where a is the unit length of our simulation with 
which the space was discretized. The parameters used in the model [see (D.1) and (D.2)] are 
p e q a  = poa = 0.05 and lMa -~= 50. The system size is 2048a with the periodic boundary con- 
dition, and Sk(t) is the average taken over 100 runs. The time expressed in the dimensionless 
form Joat and the average density of particles p* in units of Peq are: (a) (Joat, P*/Peq)= 
(4• 10 -3 , 0.1), (b) (4x 10 -2 , 0.5), and (c) (1,0.97). 
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the so-called the event-waiting method, in which we utilize the random- 
number generator to determine not only the positions, but also the times at 
which the nucleation events occur. From this figure we see clearly that the 
small-lkl components of the density fluctuation are suppressed in the later 
stages. We see also that the characteristic wavenumber k=kc(t) above 
which the density fluctuations are not suppressed is an increasing function 
of time. This means that the width of the correlation hole in the density 
correlation function (see Appendix D) decreases with time, which coincides 
with the result of Appendix D. 

From the general point of view the intermediate stage in case a is 
rather specific, since in that stage we could perform the coarse-graining 
without considering the kinetic coorelation among particles. This is 
because in our model the density dependence of the nucleation rate is 
mean-field-like over the range ~ l~, inside of which the nucleation events 
are completely random (i.e., Poissonian) at least for a short time interval. 
Such a mean-field-like nature of our model might be shared with the 
charged particle system, (7~ where the soft collision is important. In the 
C-IC transition an array of already existing discommensurations can be 
deformed when a nucleation occurs within the array. The long-range 
nature of the deformation field (at will be important, which might have 
something in common with the present analysis. 

4. N O N L I N E A R  D R I F T  O F  P A R T I C L E S  

In this section we study the model without nucleation, which is defined 
by (2.3), or 

-~x,,= -~{v'(X~-~-I)--v'(X"+?x'~)} (4.1) 

and discuss the effect of nucleation on the motion of preexisting particles. 
Since we assume that typically rx~,-x~ 1[/~ is much greater than unity, 
which is usual near the C-IC transition, we have to distinguish the 
following two cases: 

1. The interparticle distance A n defined by 

A,, = x~+ 1 - x~ (4.2) 

varies rapidly with n, that is, 

I A .  ~--A,,I > 3  (4.3) 

2. The variation of A, is small, that is, 

IA, ~ - d,I ~ ~ (4.4) 
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In general these two cases will be realized at the same time in different 
regions of the system. 

First we consider case 1 and suppose that the nucleation also occurs 
occasionally. In this case it is impossible to carry out the coarse-graining 
procedure on the rhs of (4.1) in a simple way because the "collision" of par- 
ticles, which is the random nucleation in our model, is not frequent enough 
to establish the local equilibrium (or steadiness) within the coarse-graining 
time interval z. In fact, the number of nucleation events per particle is 
~J(p*(t ) )z /p*( t )  for the time interval (t, t+z) ,  while from (3.12') we 
should choose J(p*(t))z/p*(r)~< 1 so that we can observe the transition 
period. In the above argument we have neglected the secondary or higher 
order collisions between particles. We expect that they are not so efficient 
for establishing the local steady-state condition. If the (transient) process 
involves both nucleation and annihilation of particles, the local equilibrium 
condition can be fulfilled as in the chemical reaction process. 

Next we consider case 2. It has been shown ~3) that we can regard A~* 
as the slowly varying density on the real space, 

p(x, t) ~ A,,(t) I for x ~ x~(t) (4.5) 

and that (4.t) can be converted via expression (2.5) into the form 

3tP(x, t ) -  ~ 3x 2 t)~ (4.6) 

[In Ref. 3 only the case of V(z)= e : was studied. However, the extension 
for the general symmetric interaction V(z) is straightforward.] Alter- 
natively, we may regard A,, as the slowly varying field in the space of the 
variable n, 

u(n, t) ~- An(t) (4.7) 

where n on the lhs can be extended to assume real, continuous values. Then 
(4.1) becomes (9) 

3u(n ,  F C32 V ' ( ~ )  (4.8) 

Equations (4.6) and (4.8) give the same level of description in case 2 and 
the condition (4.4) is converted into 

p(x, t) ~p(x ,  t ) ~  (4.9) 
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o r  

~nU(n, t)l ~ (4.10) 

Since our interest is in the case of dn(t)/~ ~-1/p(x, t)~ ~> 1, the above con- 
dition will severely limit the applicability of (4.6) and (4.8) in the presence 
of nucleation. In the nonlinear diffusion equations (4.6) and (4.8) the non- 
linearity of the repulsive force V'(z) leads to the preferential diffusion of the 
conserved quantities p(x, t) and u(n, t) where the particles are crowded, 
that is, where p(x, t) and [u(n, t )]  1 are large. 

Other aspects of the nonlinearity of V'(z) are seen when the array of 
particles can be divided into a set of domains within each of which the 
continuum description (case 2 above) is valid. Two typical examples of 
such situations are discussed below. 

(a) A cluster of particles. Suppose that N particles are initially placed 
in the following manner: 

xn(O)=nd o, n = 1, 2,..., N (4.11) 

The evolution in the case of N =  oo has been previously studied. ~9) There it 
was shown that (1) the continuum approximation (4.8) is practically valid 
up to the boundary of the cluster, though (4.4) is not satisfied for n = 1, (2) 
the boundary condition is effectively given as 

u(0, t ) =  Go (4.12) 

o r  

V'(u(O, t)) = 0 (4.13) 

and (3) the drift of the particles leads to the smearing of the cluster 
boundary and obeys the following scaling law: 

u(n, t) ~- ~(nt 1/2), n > 0 (4.14) 

x,,(t) ~- tl/2yc(nt 1/2), n = 1, 2,... (4.15) 

where the scaling functions ~(z) and if(z) depend functionally on V'(z) as 
well as d 0. Relations (4.14) and (4.15) show that the width of the smeared 
boundary grows as t I/2 both in x space and in n space. 

Such smearing of the boundary should also occur in the present case 
of N <  c~ until the two smeared boundaries, which have been localized 
initially at n = 1 and N, overlap with each other in the middle of the cluster. 

822/48/5-6-18 
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This mode of relaxation may be called the boundary mode. The duration of 
this mode tb will depend on N as 

tb oc N 2 (4.16) 

For  t > tb another mode of relaxation occurs. Since there is no universal 
scaling law in this mode, we will study the following class of interparticle 
force: 

iV(z) = - V ' ( z )  = e -(:+b) (4.17) 

where b is some constant. If we introduce F(n, t) by 

F(n, t )= F(u(n, t)/~) (4.18) 

then we have from (4.8), (4.17), and (4.18) 

02 
~? F =  F, ? = ~ -2F  (4.19) & 7F ~--~n2 

with the boundary condition [see (4.13)] 

F(O, t) = F(N, t) = 0 (4.20) 

We can find the following special solution of (4.19) and (4.20), which 
describes the smearing of the cluster itself, which we call the bulk mode: 

1 
Fh(n, t) = ~Tt n(U-- n) (4.21) 

The cluster size L(t)=-Xu(t ) - -x t ( t  ) can be approximated as 

N - - 1  

L ( t ) =  ~ A,(t) (4.22) 
n = l  

f N/2 
~- 2 dn u(n, t) (4.23) 

" 0  

The behavior of L(t) for t>>tb is given fi'om (4.17), (4.18), (4.21), and 
(4.23) as follows: 

L(t) ~ ~Ntog t (4.24) 

The rate of growth of L(t) is slowed compared with the boundary mode. In 
Appendix F we argue that the solution (4.21) will be an attractor of 
solutions, or that the small deviation of F(n, t) from Fb(n, t) asymptotically 
vanishes. 
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If there are many clusters containing various numbers of particles and 
separated from each other by various distances, their evolution will involve 
not only the two modes of cluster relaxation, i.e., the boundary mode and 
the bulk mode, but also the collision of these clusters, all of which depend 
on the size of the clusters and the intercluster distances. 

(b) A particle added to an otherwise periodic array of particles. We 
consider the evolution of (4.1) from the following initial configuration: 

x0(0 ) = 0 (4.25) 

x,,(0) = ,~(n - �89 Aoo, n = 1, 2,... (4.26) 
~ - ( f n l - � 8 9  n =  -1 ,  - 2  .... (4.27) 

We expect that, in the final stage of the nucleation-plus-drift process, a con- 
figuration of the particles such as that given by (4.25)-(4.27) will be found 
(see the last paragraph in this section). The motion of particles from the 
initial condition (4.25)-(4.27) is shown in Fig. 3, which was obtained 
numerically for A ~ / ~  = 10. We can see that the shocklike fronts propagate 
toward opposite directions. The fronts separate the high-density region 
(between the fronts), and the low-density region (the outside), in each of 
which the spatiotemporal variation of interparticle distances is weak. These 
shocklike fronts originate in the strong nonlinearity of the interparticle 
repulsion under the variation of interparticle distance A, = x,  + 1 - x n  over 

3(, 

n=lO 
9 
8 
7 
6 
5 
4 
3 
2 

C 0 + l o g t  

Fig. 3. ( - - )  The trajectories of particles x = x~(t) that obey the equation of motion (4.1) 
with the initial conditions (4.25)-(4.27). The abscissa is the logarithm of time. The trajectories 
with n < 0, which are not shown in the figure, are symmetric with respect to the abscissa, 
x_n(t) = -xn(t). (--) The initial positions of each particle. 
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a range much greater than ~. In fact, when the front is at the nth particle 
with n >~ 1, we have 

V ' ( x " ( t ) - x ~ - ~ ( t ) )  V' (4.28) 

for 

D , ( t ) -  { x , + l ( t ) - x , , ( t ) }  - { x , , ( t ) - x , _ t ( t ) }  > 4  (4.29) 

(for example, consider the case of - V'(z) oc e - :  or e-:2). Then the motion 
of the nth particle is governed mostly by the repulsive force coming from 
the side of the high-density region, and therefore the velocity of the nth 
particle [and the ( - n ) t h  particle by symmetry] is the greatest. The only 
exception to (4.28) occurs when x,,(t) reaches the moving midpoint of its 
two neighbors, that is, when 

0 < D~(t) < ~ (4.30) 

is satisfied. At this moment, which we denote as t - t , , + l ,  the shocklike 
front is shifted from x,,(t) to x,,+l(t) and the inequality (4.28) may again 
hold, except that now n is replaced by n + 1, that is, 

D , + l ( t , + l )  > r (4.31) 

In this way the shocklike front propagates in n space as well as in the x 
space. However, the quantity D,( t , )  decreases as the shocklike front 
propagates in n space (i.e., the shock strength weakens), that is, 

�9 " >D, , ( tn )>D~+l ( tn+l )>  "" (4.32) 

Eventually, at a certain n, which we denote n C, we will have 

D.,(t.,) ~ ~ (4.33) 

For t >  tn, the shocklike front no longer exists and the continuum 
approximation (4.6) or (4.7) becomes valid in the entire x or n space. 

The quantity x , , t , ,  is the characteristic space-time volume over which 
an added particle strongly distorts the otherwise almost periodic array of 
particles. It depends on the period A~ of the array or the density 
p*=-1lAin. Therefore, if the addition of a particle is governed by the 
nucleation rate J (p*) ,  then 

O(p*) -~ J(p*)x,ctn~ (4.34) 
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measures the degree of randomness in the array of particles. In particular, if 
O(p*) ~ 1, the continuum approximation (4.6) for the particle drift is valid 
on the whole. Since ~(p*)  vanishes as p*--* Peq while xnc and tnc remain 
finite, this inequality characterizes the final stage of the drift and nucleation 
process. 

5. S U M M A R Y  

The main features of the nucleation and/or drift process in our model 
are summarized as follows: 

When we consider only the nucleation, the process can be divided into 
two or three stages from the statistical viewpoint. The first is the gaslike 
stage when the correlation between the nucleation and the distribution of 
preexisting particles are negligible. The second, when it exists, is the stage 
where such correlation is not negligible, but is not yet so strong as to 
severely suppress the nucleation. The third stage is the final stage, when the 
density of particles is almost saturated and therefore further nucleation 
must reflect the strong nonlinearity in the nucleation rate as a function of 
the particle density. 

If we are to include the drift of particles caused by the weak and non- 
linear repulsive interaction, the distribution of particles is found to have the 
following features. The local equilibrium or steadiness of the particle 
distribution is not easily established, which makes it impossible to obtain 
the hydrodynamic expression for the drift term in the evolution equation. 
This is because in transient processes the observation time cannot be made 
sufficiently long for a hydrodynamic description without allowing the 
macroscopic state itself to change. On the other hand, the nucleation in the 
final stage of the process may be regarded as the sudden addition of a 
particle in an otherwise periodic array of particles. Then the drift of 
particles following the nucleation can be described as the propagation of 
shock fronts, which subsequently disappear eventually. The statistics of the 
particle density depends on the number of such shock fronts generated in a 
given space-time volume. 

In a future study of transient processes involving the formation of 
various patterns one of the important problems will be to clarify how and 
to what degree the past history of the process is recorded in the present 
irregular patterns. 

A P P E N D I X  A 

We derive here the identity 

( (X -  <X))")~= < ~ > ~ ,  n ~> 2 (A.1) 
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where ( - )  and ( - ) c  are the average and the corresponding cumulant over 
an arbitrarily chosen probability distribution. The extension to the multi- 
variable case is straightforward, which leads to (2.9) in the text. We start 
from the formal identity 

(e ax+bY - -  1 ) c  = l ~  e"x+ br) (A.2) 

which defines the cumu|ants order by order in both a and b. We see that if 
the variable Y is in fact a constant Yo, then we have 

(e "x+bv- 1).=log((e"X)ebV) = (e ~x-  l ) ,+bYo  (A.3) 

By choosing Yo= - { X )  and setting a =  b, we obtain 

( e x p [ a ( X -  ( X ) ) ]  - 1 ) ,  = ( e x p ( a X ) -  1 ) , -  a ( X )  (A.4) 

This in each order of a leads to the identity (A.1). 

APPENDIX B 

The master equation equivalent to (2.14) is given as follows: 

~-5 PN({x,,,}N, t)= - Z 7x,, ( \  dt/N P~({x~ t) 

N 

+ (1 --fiN.O) Z I({Xm}N--X"; X,,) PN-t({Xm}N--X,, t) 
n= I 

-- f My I( {.~m}N; y) PN({Xm}N, t) (B.1)  

where PN({Xm}u, t) is the probability that at time t there are N particles 
with their positions at {Xm}u = {Xl, X2,..., XN}, and (dx,,/dt)u stands for 
the rhs of (2.2) in the text. The last two terms on the rhs describe the 
nucleation of a particle, where the nucleation rate I( . ;  y) is related to 
]( y, . ) = J ( m  �9 ~( y, �9 )) as follows: 

:({x,,}N; y) =.~(M, ~(y, .1) (B.2) 
N 

:(y, ) =  Z a(y-xm) (B.3) 

The notation {x ,n}N-x,  denotes {xl,...,x, ,, Xn+I , . . . ,XN} ,  and 6N,o is 
unity if n = 0 and zero otherwise. 
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The equivalence between (2.14) and (B.1) can be seen by comparing 
the evolution equations of the (multi-) particle density distribution 
function. As an illustration, we consider the two-particle distribution 
function defined by 

N N 

p2(x, y;t)= PN({Xm}N, t) ~ CS(X--Xk) ~ 6(y--xt) (B.4) 
N = 0  k = l  I = 1  

where ~N denotes (N!)-1 f dxl [. dx2... ~ dx u. Operating with a/at on (B.4) 
and using (B.1), we obtain after some algebra 

8 -~ p~(x, y; t) 

a y~ 6 ( x _ x ~ ) k d t J + l ( { x ~ } ~ ; x  ) 6(y-x,)  
~--- - -  ~ k = l  l = 1  t 

+ -~Y~=I \ d t JN  +I({xm)N;y) ~ 8(x--x,) 
l = 1  t 

+ ((t({x,.}N; x))), ,~(x- y) (B.5) 

where we have defined 

r ~ fNPN({Xm}N,t)(gN({Xm}N; ') (B.6) 
N = O  

On the other hand, the two-particle density distribution can be expressed 
as follows: 

p~(x, y; f)= (t~(x, t)~(y, t)) (B.7) 

where ( . )  denotes the average over all possible random processes starting 
from a given initial condition. [We will use the same notation ( . )  as in 
(2.7) unless confusion could arise.] By expressing 8p(x, t)/Stl~rift in (2.14) 
as -SJ(x, t)/Sx [see (2.5)], we have 

8 
aZ <.6(x, t)~6(y, t)> 

= lim 1 { (l-iS(x, t+e)-p(x, t)] t~(Y, t ) )  
e ~ O  

+ <:(x, t)[:(y, t+~)-: (y ,  0 ] )  

+ ([#(x, t+  ~)-#(x, t)] [~(y, t + ~)-~(y,  03)} 
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d 

+ J i m  dtl dr2 r t , )~(y,  t2)>,,~ > + e(~ ~) 

= ( { -  ~xJ(X, t)+ [(x, t)} #(Y, t)) 

+(jb(y,t){- ~--f J(y,t)+I(y,t)}) 

+ ( i ( x ,  O )  6(x - y)  (B.S) 

where ((#g),,~) on the rhs of the second equality means that the cumulant 
of d(x, tl) #(y, t2) should be taken first over the random nucleation events 
during the infinitesimal time interval (tl, tl + a) with ~6(., t~) fixed and then 
over all possible random processes up to the time t 1. The complete 
correspondence between (B.5) and (B.8) illustrates the equivalence between 
(B.1) and (2.14) in the text. 

APPENDIX  C 

We consider the Langevm equation 

d 1 J((t)+f(t) 
Z x ( t )  = - ~- (c.i) 

where r, is the characteristic decay time of the "fluctuation" X(t) and f(t) 
is the white Gaussian noise whose mean (f(t)) is zero and second 
cumulant is 

1 (f(t) f(t') ) =-- 6(t- t') (C.2) 
"C c 

[the factor % 1 in (C.2) was chosen only for later convenience]. We can 
explicitly solve (C.1), and using its solution and (C.2), we obtain 

< {x(t  + ~) - x(O}~ > = 1 - e -~/~ (c.3) 

- d t '  X ( t ' )  = e -~1~  - 1 + ~ , ,  ( C . 4 )  

_ dr' f(t') = Ji 
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On the other hand, the integration of (C.1) over (t, t + r) yields 

- - - -  - dt' '+~ f(t')( X ( t  + z)  - X ( t )  = ~, ( ~  , (C.6) 

From (C.3)-(C.5) we see that (1) if z ~ % ,  the second term on the rhs is 
~ ( z / r , ) J / 2 ~  1 and balances with the lhs, while (2) if z>z, . ,  the former is 
~ ( ' r / T c ) t / 2  >~ I and almost completely cancels with the first term on the rhs. 

APPENDIX D 

We evaluate (3.26) in the text for the concrete model of J ( z )  and 
M ( x ) ,  which are defined as 

J ( z )  = Jo exp ( Po + Po~ 
Peq --Z ~eq) 

1 - Ix l  
M ( x )  = 2-7-s exp  t--7- 

(D.1) 

(D.2) 

where ~,r P0, and Peq a r e  positive constants. From the discussion leading 
to (3.29), the lower bound of integration in (3.36) can be set equal to zero. 
Given the forms of J ( z )  and M ( x )  as above, (3.36) can be rewritten, apart 
from the cutoff factor O(lM 1 -- Ikl),  as follows 

1 dyexp ( 2br 2b3~r k 
S k ( t ) = p ~ q R ( t ) J o (  \ l - R ( t ) y  l ~ - - ~ t ) /  (D.3) 

where 
R ( t )  = p*(t) /p~q (D.4) 

b = Po/Peq (D.5) 

a4 k = 1/(1 + k212M) (D.6) 

We can evaluate the integral in the two limiting cases 2bM k >> 1 (case A) 
and 2b-~k <~ 1 (case B): 

p e q R ( t )  

& ( t )  ~- 

for 

1 
R ( t )  < - -  (case A) 

2bMr k 

1 - R ( t )  >> 2b_/~r k (case B) 

p~qEl - -  l ~ ( l )  ] 2 

2ha?, 
1 
_ < g ( t ) < < . l  

for 2 b M k  (- 

1 - R ( t )  ~ 2 b M k  ~log 
( 

2bJ~ k -(-1 
[1 - R ( t ) ] ~ J  

(case A) 

(case B) 
(D.7) 
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In both cases we can construct the following approximant for Sk(t): 

1 2b.~rk -(-1 
Sk(t)~Peq -'~q- [ l _ R ( t l ] 2 j  (D.8) 

Substituting (D.6) into (D.8), we obtain 

Sk(t)"~ p*(t) 1 l +q~(t) l +kYlerr(t)2 

where 

(D.9) 

2bR(t) 2pop*(t ) 
~(t) = [ 1 - R ( t ) ]  2= [Peq--p*(t)] 2 (D. 10) 

IM 
/eft(t) = [-1 + ~(/)31/2 (D.11) 

The term containing ~b(t) in (D.9) describes the correlation in the particle 
density. The density correlation function is given by 

(6p(x, t) 8p(x+r, t))==-p*(t)[f(r)+w(r, t)] (D.12) 

with 

w(r, t) = ~ dk [Sk( t ) -  p*(t)] exp(ikr) (D.13) 

q~(t) 1 - I r l  
1 + ~b(t) 2left(t) exp lerf(t) (D.14) 

We see that a correlation hole occurs with size ~leff(t) (<~lM). Since ~b(t) 
increases with p*(t), the hole becomes narrower and deeper as time goes 
on. The existence of the correlation hole is the result of the negative feed- 
back mechanism in the p*(t)-dependent nucleation rate. 

A P P E N D I X  E 

When we can choose the coarse-graining scale l and ~ such that (3.12), 
(3.13), and (3.22) are satisfied and the l <  lM, we can derive the evolution 
of the coarse-grained density p(x, t) by the following path-integral 
formalism. 

We define the unit cell A XT by 

Axr={(x,t);(X--1/2)l<~x<<,(X+l/2)/,  Tz<t<~(T+l)z}  (E.1) 
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where X and T are integers. Under the above assumptions the nucleation 
rate within each unit cell can be regarded as constant and therefore the 
probability distribution P(NxT; p) for the number of nucleation Nxr within 
the unit cell Axr obeys the Poisson distribution, 

~NxT 
P(Nxr; p) = exp( - Nxr) ~" xr (E.2) 

Nxv! 

NXT=J (M*  p(Xl, T'c))h'>> 1 (E.3) 

where p(x, t) is the coarse-grained density defined in the same manner as 
6p(x, t) [see (3.10)] and the last inequality is just the assumption (3.22). 
We note that p(Xl, Tr) is determined by the previous nucleation events as 
follows: 

T - 1  

p(Xl, Tz) = l - '  ~ Nxr, (E.4) 
T ' = 0  

Therefore the joint probability P{Nxr  } that there are Nxr of the 
nucleation events in each unit cell Axr is given by 

P{ Nxr} = [-[ [1 P(Nxr; P) (E.5) 
T X 

with P(Nxr; p) depending not only on Nxr, but also on {Nx,r," T' < T}. 
Using Stirling's formula for Nxr, we have 

~Nx,r, Nx,r, log +1 (E.6) - l ~  , lz lz \Nx,r,}  

We now return to the continuum representation. We denote 

lz f dx f (E.7) 
X T 

-NxT = J ( M ,  p(Xt, T~))~  J ( M  , p(x, t)) (E.8) 
lT 

N X T  s(x, t) (E.9) 
lz 

where p(x, t) and s(x, t) are related via the coarse-grained form of (3.1), 
that is, 

gt p(x, t) = s(x, t) (g.10) 
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Then (E.6) is converted into 

P{NxT} ---> P[s] = exp{ - ~ [ s ]  } (E.11) 

+']1 
(E.12) 

Equations (E.10)-(E.12) describe the path probability for the macroscopic 
nucleation source s(x, t). 

We are interested in the path probability functional ~ [ p ]  for the 
density p(x, t). In our case Y'[p] is proportional to P[s], since s and p are 
linearly releted by (E.10) and therefore the functional Jacobian (or the 
Radon-Nikodym derivative) D[p]/D[s] is independent of s or p. Thus we 
have 

N [ p ]  = e x p { - c p [ p ]  } 

q)[p] = ~ [ s ]  + const 

(E.13) 
(E.14) 

Since Nxr>>l [see (E.3)], the Poisson distribution P(Nxr; p) has a 
sharp maximum at N x r = N x r  . Then we can approximate q~[p] by its 
minimum plus the harmonic expansion around it, that is, 

(~2q) P~P* (p[p]~-(p[p*]+~fd(1)fd(Z) @(1)6p(2) [p(1)-p*(1)][p(Z)-p*(2)] 

(E.15) 

where p*(x, t) is the minimum of qo[p] (the most probable path) and (i) 
with i =  1 or 2 denotes (xi, ti). We determine p*(x, t) from 

(~0 P = P* @(x, t) = 0 (E.16) 

The lhs of (E.16) can be calculated using the following identity: 

a 6 
~p(x, t) at ~s(x, t) 

The result is 

(Sq~ 3, [J(M,p(x,t)))  { J ' ( M  
6p(x, tl=-~ ,og~ ~ , - ~  + M * 

(E.17) 

�9 p)[1 J(~*P)]} (x, t) 

(E.18) 
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where the last term on the rhs means that 

(9(x, t )= f  M ( y - x )  (9(y, t) dy M* (E.19) 

I J ( M ,  p(y, t)) 1 (E.20) ( 9 ( y , t ) = J ' ( M , p ( y , t ) )  1 s(y,t)  

From (E.10), (E.16), and (E.18)-(E.20) the most probable path is given by 

8 
at p*(x, t) = S ( M  �9 p*(x, t)) (E.21) 

The path probability for the small fluctuation 

6p(x, t)= p(x, t ) -  p*(x, t) (E.22) 

is obtained from the second term in (E.15). After some simple algebra we 
obtain 

62~~ t') 
6p(x, t) 6p(x', , = :  

a 2 ~ 6(x-x') ~(t-t')} 
- et er  (:(_~; 7"(7, t)) 

a ,~:'(M, p*(x, :_)))M(x- x') 6(,- r)} 

8 f f ( M  �9 p*(x, t)) . . . .  6(t - t')} + ) 
) 

+f@ [f(M.p*(y,.~p,(y,t))t))]2M(y_x)M(x,_y)6(t_r) (E.23) 

Substituting this into (E.15) and integrating by parts, we obtain, apart 
from the boundary terms, 

1 

2 J ( M  �9 p*(x, t)) 

x - ~ t 6 p ( x , t ) - J ' ( M * p * ( x , t ) ) M * 6 p ( x , t )  (E.24) 

Expressions (E.13) and (E.24) mean that in the present approximation 

8 
f (x ,  t )-=:6p(x,  t ) - J ' ( M  . p*(x, t)) M . 6p(x, t) 

o t  
(E.25) 
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is the Gaussian white noise with second cumulant 

( f ( x ,  t) f ( x ' ,  t ' ) )c  = J ( M  * p*(x, t)) 6(x - x')  6(t - t') (E.26) 

Equations (E.25) and (E.26) recover the result for the intermediate stage 
obtained in Section 3. 

A P P E N D I X  F 

We argue that Fb(n, t) given in (4.21) is an attractor of the solution of 
(4.19) and (4.20). Defining ~(n, l o g t ) = F ( n ,  t)--Fb(n,  t), the linearized 
evolution equation for ~b(n, 2) becomes 

~-~b(n, 2 ) =  0n 2 1 ~b(n, 2), O ~ n ~ N  (F.1) 

with the boundary conditions 

~b(0, )0 = ~b(N, 2 ) = 0  (v.2) 

We consider the quantum mechanical Hamiltonian 

I 2 I = - ~ p , , + ( E + l ) / n ( N - n ) ,  O<<,n<~N (F.3) 

where [~ = ( -  i) O/~?n and E is real. It corresponds to the assumption that in 
(F.1) there is no oscillatory varying modes, which seems natural for the 
present relaxation process. Then we see clearly that for E +  1 > 0 all the 
eigenvalues of H must be positive. This means that (F.1) and (F.2) cannot 
have a solution of the type ~b(n, 2 ) =  4'(n)exp(E2) with E >  -1 .  
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